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Spectroscopic Studies on X(YZ), Type Molecules

II. Application of Complex Symmetry Coordinates to Molecular
Vibrations of Boric Acid with Symmetry Cj,

S.J.CYVIN* R. W. MOONEY,* J. BRUNVOLL and L. A. KRISTIANSEN

Institute of Theoretical Chemistry, Technical University of Norway, Trondheim, Norway

Molecular vibrations of the boric acid model, X(YZ);, of symmetry
C,, are treated theoretically. Complex symmetry coordinates have
been introduced in the doubly degenerate species E’. An extension
of the GF matrix theory from Wilson, Decius and Cross to the case
of complex matrices is applied. Also reported is a method for solving
the secular equation GFL = LA in terms of real numbers, convenient
for machine solution. In this method the complex matrices are repre-
sented by real matrices twice the usual size.

I. INTRODUCTION

Molecules having equivalent atoms that may be interchanged with one
another by only proper or improper rotations about a fixed axis fall
into the C, and §, point groups. The C,;, symmetry groups differ only from
C, groups by the addition of a horizontal reflection plane perpendicular to
the rotation axis. These three types of groups, viz. C,, 8,, and C,,, are the
only Abelian groups among the chemically important symmetry groups, and
they also share the common characteristic that they are the only groups
whose character tables contain complex numbers. Their complex characters
arise necessarily from the purely cyclic nature of the C, and S, groups and
the predominantly cyclic nature of the C,, groups.

It is difficult to find examples of molecules with structures belonging to
one of the Abelian groups. Therefore it is natural that almost no work has
been done on the molecular vibrations of such molecules. In fact we have
found only one paper among the vast number of works based on the Wilson
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Fig. 1. Planar X(YZ); molecular model of
symmetry Cg. In-plane valence coordi-
nates are given.

GF matrix method.! This paper concerns isolated molecules of boric acid,
which have been assigned to a planar molecular model of symmetry C,,, and
treated incorrectly by Pistorius.? In the present work we point out some of
the special features arising from the complex numbers of the character table,
and give a mathematically correct normal-coordinate analysis of the boric
acid molecular model. Hereby a set of complex coordinates are utilized in the
Wilson GF matrix method probably for the first time, although the methods
are well known from other fields of applied mathematics.

II. MOLECULAR MODEL

The planar X(YZ), molecular model of symmetry C,, here considered,
is shown in Fig. 1. As valence coordinates we use (+ = 1, 2, 3) *
d; for YZ stretchings,

r: for XY stretchings,
Re; for YXY bendings,
(RD) B for XYZ bendings,
Ry for out-of-plane bendings, and

(RD)* 7, for torsions.

These coordinates differ only in trivial changes of notation from those defined
by Pistorius.2 We use R and D to denote the equilibrium distances of XY
and YZ, respectively. The equilibrium XYZ interbond angle will be identified
by the symbol B.

* It should be noted that the introduction of three out-of-plane bendings Ry; as done by
Pistorius ? is quite unnecessary. It has only formal meaning because all of the coordinates y,,
73, and y, are identical! They are given in terms of the out-of-plane cartesian displacements by

Ry, = z, + 25 + 24— 32,
Consequently two of the redundant conditions as given by Pistorius ? are trivial and could easily
be avoided. The only unavoidable redundancy is the familiar one which occurs among the «
coordinates.
Acta Chem. Scand. 19 (1965) No. 5
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Before proceeding further it is instructive to compare the treatment of an
X(YZ), planar molecule of symmetry Dy, having a linear X—Y—Z bond
to the case here considered, namely an X(YZ), molecule with Cj, symmetry
because of the angle B (# 180°) formed by the X —Y —Z atoms. The planar
X(YZ); molecule of D,, gives rise to vibrations having the representation

Iy(Dy) =24, 4+ A, +2 A4, +4E" + E”

A choice of symmetry coordinates which transform according to the require-
ments of symmetry group Dy, is readily made to give an orthogonal U matrix
(S = UR). The resulting G matrix shows no abnormalities. The symmetry
coordinates given by Pistorius 2 are in fact those that, with minor rearrange-
ments and changes of sign, would be suitable coordinates for group Dyg,.

The planar X(YZ), molecule of the symmetry (s, gives rise to vibrations
having the representation

Iyp(Cy) =3 A" +2 A" 4+ 4 E' + E”

An inspection of the character tables of Dy, and Cj, given in Table 1 shows
that 4,” of D,, and A’ of Cy, transform similarly as do 4,” of D, and A" of
C,,. However, the doubly degenerate E representations are quite different
since B’ of Dy, is a two-dimensional representation with real characters while
E' of C,, is equivalent to two one-dimensional representations including
imaginary numbers for characters. The situation is similar for the E”
representations.

A simple addition of the two one-dimensional representations of E’ (Cy,)
yields real characters which are identical to the characters of corresponding
operations in point group D,,. The real coordinates based upon these real
characters will yield satisfactory results for the A’ and A" species because

Table 1. Character tables for the symmetry groups Dy, and Cy;. & = exp(2n:/3).

Dy E 20, 30, oh 28, 30,
A4, 1 1 1 1 1 1
Ay 1 1 —1 1 1 -1
E’ 2 —1 0 2 -1 0
A 1 1 1 —1 —1 —1
A, 1 1 -1 -1 -1 1
E” 2 —1 0 -2 1 0
Cah E 03 032 () S;, S;;‘
A’ 1 1 1 1 1 1
1 e e* 1 £ e*
¥ {1 &* € 1 &* €
A 1 1 1 —1 —1 -1
” 1 e e* —1 —e —e*
E {1 &* e -1 —e* —e
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of their direct correspondence in the groups Cj, and Dy,. Also by virtue of
the fact that the E” species contains only one degenerate symmetry coordinate
in the present case, it appears that the corresponding F and G matrix elements
must be real, and the real coordinates as chosen by Pistorius are satisfactory
for E” as well.

III. NON-DEGENERATE SPECIES AND SPECIES E”

The applied symmetry coordinates belonging to the species 4’, A”, and E”
are real and identical to those of Pistorius.? They are given below in our
notation.

Species 4: §; =37
8y =38F (ry+ra+1y)
83 =37 (BRD)} (By + B2+ Bs)

Species A”: S, = 3% R(y, + y2 + 7s)
8; =37 (RD): (v, + t5 + 15)

Species E”: Sy, = 67 (RD)} (21, — 15 — 1)
Sip = 27 (RD)} (vy — 1)

Since we have found some computational errors or misprints in three of the
expressions for the G-matrix elements given by Pistorius 2 for the out-of plane
A" and E” species, the G-matrix elements as calculated herein are given
below. The symbols uy, py, and u, are as usual used to denote the inverse
masses of the X, Y, and Z atoms, respectively.
(@ = Gj)
Species A"
G’n_,uv—l—,uu 12-— Ycos1 B, Gy3= — (L RW* pysin B
(R/D)* Uy Sin &
Gag = [(RID) 1 (DIE) — 2008 B] ey + (RIDy

Species A": Gy = 27 pux + 9y
G,s = — 9(D[R) (3% 4 cot B) ux — 3[(D/R)} (3* + cov B) — (R/D)*
cosec B]

— 3(DJR) (3¢ + oot B) jy -+ (R[D) (sy/sin?B)
+ [(R/D) —|— (D/R) + 2(D/R) sin B(3%cos B + sin B) — 2(cos B - 3isin B)]

(uy/sinB)
Species E”:

Gio 10 = {(D/R)sin®B + [(B/D)i—(D/R)icosBI} (uy/sinB) + (R/D)(uysin*B)

IV. SPECIES E’ IN TERMS OF COMPLEX COORDINATES

Two degenerate sets of complex symmetry coordinates of species E’
have been constructed from the character table (cf. Table 1) including its
complex number ¢ and &*, viz.

& = exp(2ni/3), e* = exp(—2n1/3)
Acta Chem. Scand. 19. (1965) No. 5
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The resulting coordinates follow.

Ses = 371 (d; + edy + &*dy)

S, = 8% (ry + ery -+ &*ry)

8g, = 37 (Re, + eay + e*ag)

Sy, = 37 (RD) (B, + &Py + &*By)

Sg = 374 (dy + e*dy + eds)

Sz =374 (ry + e*ry + &)

Sy = 37 R(a, + t*ay + eay)

Sgy = 374 (RD) (B, + &* By + & By)

With these coordinates the G matrix diagonalizes properly. The E’ blocks
contain complex elements and are Hermitian rather than symmetric. The
two blocks corresponding to the a and b coordinates are conjugate to each
other, and all elements combining an @ and b coordinate vanish. The elements
are given explicity in the following.
(G = Gi*)

Goa 6a = Gov 6o = iy + 11

Gés 70 = G 75 = pycos B

G6a 8a — Gsb Sb* = 3¥i,uysin B

Gea 9 — ng 6y = — (D/R)* ,uYsin B

Graa = Gu o = 7ﬂ‘: + ty

Gra 82 = G 8 = 33

G 90 = Gy 9™ = (R/D)* uysin B + 3(D[R)kiux

Gsa 8a = Gy v = Jux + 31

Gsa 0a = Gas 9* = 334 D|R) dug — 3*[(R/D)*cos B — (D|R)?iuy,
Goo 00 = Gov 90 = 3(D[R)ux + [(R[D) + (D/R) — 2cos B] py + (B[D)u,

V. CONNECTION TO A TREATMENT IN REAL COORDINATES

As stated above it is possible to construct a set of real coordinates based
upon the real characters obtained by adding the two one-dimensional repre-
sentations of E’. Pistorius? in fact has given such a set, which is connected
with our complex coordinates by the unitary transformations

Sia = 27H s + 1), Sp = 274 (S — i)

for j = 6, 7, 8,9. Accordingly the real coordinates (/) for the d-type (YZ
stretching) taken as an example, are

Sa = 67 (2d, — dy — dj), S = 27} (dy — dy)

with the same combinations of r, Re; and (RD)! g, for the other types. It
should be noted that similar sets of elght coordinates could be constructed
in many various ways, each following the usual rules. One observes for instance
that d,, d,, ds, (dy — d3), etc., all transform in the same way under the symmetry
operations. The above set (and similar sets) of real coordinates & are however
mathematically speaking not true symmetry coordinates since they do not
form true degenerate sets. This statement becomes evident from the fact
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that the corresponding G matrix does not block out properly, but contains
nonvanishing elements for binary terms of the type &/ /j». The resulting
off-diagonal blocks have erroneously been omitted by Pistorius.2 The part
of the G matrix associated with the ./ coordinates specified above, shall
here be referred to as &. The elements of its diagonal blocks should be iden-
tical to those given by Pistorius,? but again some computational errors or
misprints were found in that paper. The elements in question appear as the
real parts of the G-matrix elements based on the complex coordinates intro-
duced in Section IV. In fact one has

Giaja=GCGip jp* =i jo— 1G4 p
A mapping of the real § matrix may be useful. Table 2 shows the zero elements
obtained in the particular case here studied. It also shows some general prop-
erties: (a) Over-all symmetry; Gijoa = Gjaiay Fiv o = Fjpivy Gia jp = G ias
(b) Skew-symmetry of off-diagonal blocks; i jp = — &, 0, () identity of
diagonal blocks; G, jo = Gis . ‘

VI. WILSON’S METHOD IN TERMS OF COMPLEX COORDINATES

The familiar GF matrix method of Wilson?! is straightforwardly extended
to the general case of complex coordinates.* We use of course the usual real
valence coordinates (R), but the U matrix of

S =UR
is now a unitary matrix rather than orthogonal. The G matrix is defined by
G = BM! Bt

where t denotes the associate matrix, and becomes the transpose in the real
case. Here B is defined by S — BX

Table 2. Mapping of the @ matrix.*

6a Ta 8a 9a 6b 7b 8b 9b
6a A E 0 H 0 0 L 0
Ta E B F q 0 0 0 M
8a 0 F (o) 0 —L 0 0 K
9a H Q 0 D 0 —-M —K 0
6b 0 0 —L 0 A E 0 H
7b 0 0 0 —M E B F Q
8b L 0 0 —K 0 F C 0
9b 0 M K 0 H Q 0 D

% The equations in Appendix VII and VIII of Ref. 2 are formulated in terms of the general
complex matrices.

* Arithmetic expressions for the elements are found from Section IV with the aid of the
relations in Section V. :
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where X represents the cartesian displacements as a real column matrix.
M is a diagonal matrix containing the atomic masses. The kinetic (7') and
potential (V) energies are given by the Hermitian forms

27 =8t G1Sand 2V =StF§$
respectively, and are consequently real. The secular equation
GFL=L4
is still valid even with the complex matrices. The characteristic values of

GF, viz. the frequency parameters 1, = 4a® ¢* w;?, are of course real. The
normal-coordinate transformation matrix, L, satisfies the relations

S=LQLLt=G LALt=F"1

VII. COMPUTATIONAL METHOD WITH REAL MATRICES

In the normal-coordinate analysis of the species E’ for boric acid one may
use a method of representing a complex matrix by a real matrix twice its
size. The method may be adapted to ordinary computing programs scheduled
for real cases. It is based on the following theorem:

The set of matrices of the form

[ ]

—b alf’

where a and b are arbitrary real numbers, except a = b = 0, form a group with
respect to matriz multiplication, which is isomorphic with the group of the complex

numbers

a+1b

with respect to ordinary multiplication.
The theorem holds also for complex matrices

A + B,
which may be represented by the real matrices
A B
[-5 Al
Accordingly we introduce the matrices

G, G I: Fr F,:l [ L, L,]
&= I:_ G, GR:| ’ F= —-F F ’ £= —L L
in order to represent the corresponding complex matrices, viz.
G=0G;+1:G, F=F,+F, L=L;g4:L,

Because of the Hermitian nature of G and F, the submatrices G; and Fj are
symmetric, while G, and F, are skew-symmetric. With these new matrices
of twice the usual size, one has

Acta Chem. Scand. 19 (1965) No. 5



1038 S. J.CYVIN ET AL.

LL'=¢8, LPdiag(Ad1,A4") L' =F
G FL= Ldiag (4,4)

These relations conform with the ordinary real case, only with the anomaly
that each characteristic value (4,) occurs twice. /' denotes the transpose
of /°, and

diag (4,4) = [ﬁ 3]

Let G, denote the 4 X 4 matrix corresponding to the complex b-coordi-
nates of species E’ as defined in Section IV. Then the & matrix as defined
here is found to be identical with the matrix of Sextion V designated by the
same symbol. With this matrix it would be possible to solve the problem for
the corresponding matrix of L,, provided a suitable set of force constants
were known. Then the matrices associated to the a-coordinates would imme-
diately be obtainable according to the relations

G,=6G6* F,=F* L, =L*
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